JOURNAL OF APPROXIMATION THEORY 12, 199-200 (1974)

Addendum to

"Best Polynomial Approximation to Certain Entire Functions"

A. R. REDDY

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 Communicated by Oved Shisha

The notation and definitions herein are the same as those in Ref. [2].

THEOREM 17. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be an entire function of perfectly regular growth (ρ, τ) with real coefficients. Then

$$\lim_{n \to \infty} 2^{\rho} n E_n^{\rho/n} = \rho e \tau. \tag{43}$$

Proof. Since f(z) is an entire function of order $\rho(0 < \rho < \infty)$ and type τ , therefore [1, Theorem 3]

$$\lim_{n \to \infty} \sup 2^{\rho} n E_n^{\rho/n} = \rho e \tau.$$
(44)

On the other hand [2, p. 105] there exists a strictly increasing sequence $\{n_p\}_1^{\infty}$ of positive integers such that

$$\lim_{p \to \infty} \frac{n_{p+1}}{n_p} = 1 \tag{45}$$

and

$$\lim_{p \to \infty} n_p E_{n_p}^{\rho/n_p} = \rho e \tau 2^{-\rho}. \tag{46}$$

Clearly

$$E_0 \geqslant E_1 \geqslant E_2 \geqslant \cdots \geqslant E_{n-1} \geqslant E_n \to 0.$$
⁽⁴⁷⁾

Set

$$n_p \leqslant n < n_{p+1}; \tag{48}$$

then from (47) and (48) we get

$$\frac{n}{\rho e} E_n^{\rho/n} \ge \frac{n_p}{n_{p+1}} \frac{n_{p+1}}{\rho e} E_{n_{p+1}}^{(\rho/n_{p+1})(n_{p+1}/n_p)}.$$
(49)

199

Copyright © 1974 by Academic Press, Inc. All rights of reproduction in any form reserved. A. R. REDDY

From (45), (46) and (49), we obtain by letting $p \to \infty$,

$$\lim_{n\to\infty}\inf\frac{n}{\rho e}E_n^{\rho/n} \ge \tau 2^{-\rho}.$$
(50)

The required result (43) follows from (44) and (50).

We take this opportunity to correct misprints in [2].

Page	Line	Read	For
99	11	$\lim_{\mu \to \infty} \frac{2^{n_{\mu}} E_{n_{\mu}}(f)}{ a_{n_{\mu+1}} } = 1$	(11)
105	2	growth (ρ, τ)	growth
105	7	lim sup	lim
106	22	$\lim \sup_{i=1}^{sup} (\) = \lim \sup_{i=1}^{sup} (\) = \frac{ au}{\omega}$	(28)
106	24	$\lim \sup_{i=1}^{\sup} (\cdot) = \lim \sup_{i=1}^{\sup} (\cdot) = rac{ au(k)}{\omega(k)}$	(29)
107	19	k=1 and $ ho=1$	k = 1
107	22	exponential type	type
108	11	Z^k	Z_k
108	19	$\left(\frac{\pi}{4}\right)^{n+1} \frac{1}{2^n(n+1)!}$	$\frac{1}{2^n(n+1)!}$

References

- 1. A. R. REDDY, Approximation of an entire function, J. Approximation Theory 3 (1970), 128-137.
- 2. A. R. REDDY, Best polynomial approximation to certain entire functions, J. Approximation Theory 5 (1972), 97-112.

200